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The high-temperature superconductors' La, ,M,CuO4 (M =
Ba, Sr; x ~ 0.1-0.2; T, =~ 30-40 K) are closely related in
structure to the oxide La,CuQ,,'™? which contains CuQy, layers
made up of corner-shared CuQg octahedra. The La®* cations of
La,CuQy are located at the 9-coordination sites in between ad-
jacent CuQy layers, and such 9-coordination sites are randomly
occupied by the La®* and M?* cations in La, M,CuQ,. Above
533 K, the crystal structure of La,CuQy is tetragonal, and its CuQ,
layers are flat.?®> Below 533 K, however, La,CuQ, is ortho-
rhombic, and its CuQ, layers are buckled.?* When it was first
observed that La, ,M,CuQj, is tetragonal at room temperature,'t
it was proposed'™? that the tetragonal-to-orthorhombic (T — O)
distortion in La,CuQy, is a Peierls distortion,* and the important
role the dopant M plays in La, ,M,CuQj, is to suppress this
distortion. However, this reasoning was found to be incorrect,
since the T — O distortion (and hence the buckling of each CuQO,
layer) is not a Peierls distortion.* Furthermore, La, ,M,CuQ,
does become orthorhombic® well above its superconducting
transition temperature (i.e., the T — O distortion at ~200-215
and ~180 K for La, ,Sr,Cu0O,%9 and La,_,Ba,CuQ,° re-
spectively). The low-temperature properties of La,CuQ,4 depend
sensitively upon the extent of lanthanum and oxygen vacancies.”$
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Table I. The Atom—Atom Potential Parameters of the O%*-..0%,
Cu?*...Cu?*, and La’*...La** Pairs

pair B (eV) 2 (A) C (eV A%
0%..0* 1387.7 0.375 63.31
Cu*...Cu?* 269.10 0.264 0.5586
La®*..La® 28855 0.250 325.0

Nonsuperconducting samples of La,CuQ, are susceptible to an
antiferromagnetic (AFM) ordering.® and the electron localization
associated with this AFM ordering is suppressed by the dopant
M in La, ,M,CuO,. Since the T — O distortion is not a Peierls
distortion,’ the buckling of an individual CuQ, layer in La,CuQ,
or La, ,M,CuQ, does not stabilize the electronic energy.*®
Therefore, the T — O distortion and the CuQ, layer buckling in
La,CuQ,4 must originate from the ionic interactions involving the
La* cations.® In the present work, we evaluate these interactions
on the basis of empirical atom-atom potentials.’

For ions i and j separated by the distance r; with the charges
g; and g;, respectively, their Coulomb (W), nonbonded repulsion
(W,;), and van der Waals attraction (W,) energies are expressed
by® W, = giq;/rip Wax = By exp (~1y/p;y), and W, = ~Cy/r,¢, where
the constants B, p, and C are adjustable parameters to be de-
termined on the basis of experimental data. We assume that the
B, p, and C values between different ions are related to those
between identical ions as®'®

B; = \/B;B;

] JJ

Vpy=A/ps +1/pp)/2  and

G = V C;;Cj; 4y

The constant C;; for a pair of identical ions i is approximated by*
C; = 3,P2/4 (2)

where I; and P, are the ionization potential and the polarizability
of the ion i, respectively. With eq 1, it is necessary to determine
the B, p, and C values only for the O%+.0%", Cu?*...Cu?*, and
La3*...La%* pairs to define all the atom—atom potentials present
in La,CuQy. Starting with the B, p, and C values of the O%+.0%*"
pair determined for the O~O distance range of 2.64~5.29 A in
MnO, "2 we use the wMIN program of Busing!? to derive!4 the
B, p, and C values for the Cu?*..Cu?*, La**w.La3* and 0% .0
pairs that reproduce the unit cell and atom positional parameters
of CuO' and La,0,.!5 The B, p, and C parameters thus obtained
are listed in Table I. As summarized in Table II, these B, p, and
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Table II. The Experimental and Calculated Values for the Unit Cell and Atom Positional Parameters of the CuQO, La,0;, and La,CuO,

Crystals®?
QuQ‘S La,0,'® La,CuQ,!® La,Cu0O,
monoclinic (C2/c¢) trigonal (P3ml) orthorhombic (Cmca) tetragonal (/4/mmm)
a = 4.6837 (-0.0321) a = 3.930 (-0.029) a = 5.3562 (-0.0078) a = 3.7945
b = 3.4226 (-0.0644) c =6.120 (0.196) b = 13.1669 (0.1015) c=13.1205
¢ = 5.1288 (0.0233) z(La) = 0.235 (0.012) ¢ = 5.3990 (0.0129) z(La) = 0.3633

B8 =99.54 (-1.82)
z(0) = 0.4184 (0.0065)

2(0) = 0.630 (0.032)

y(La) = 0.3613 (0.0011)
z(La) = 0.0061 (0.0018)
(0O1) = 00070 (0.0056)
(02) = 0.1842 (~0.0007)
2(02) = -0.0336 (~0.0153)

z(02) = 0.1827

“Except for tetragonal La,CuO,, the experimental values are the numbers without parentheses. The numbers in the parentheses refer to the
deviations of the calculated values from the corresponding experimental ones. ®The cell parameters a, b, and ¢ are in units of A, and the angle 8 is

in units of deg.

C valllées describe the crystal structures of CuO and La,0; quite
well.

To evaluate the energetics associated with the T — O distortion
in La,CuQ,, we employ the wMIN program and calculate the
crystal energy of La,CuQ, as a function of its unit cell and atom
positional parameters on the basis of the atom-atom potentials
generated by the B, p, and C values of Table I. As summarized
in Table II, the crystal structure of orthorhombic La,CuQj is very
well reproduced by the present atom—atom potential calculations.'®
Under the space group Cmca,'t the crystal structure of La,CuO,
is calculated to remain orthorhombic [i.e., the z(La), y(O1), and
z(O1) values are nonzero], although this space group does not
prevent La,CuO, from becoming tetragonal. Also listed in Table
IT are the optimum unit cell and atom positional parameters of
tetragonal La,CuQy,, calculated by imposing the space group
14/mmm, which are very close to the unit cell and atom positional
parameters of tetragonal La,; gsBag ;sCuO, at room temperature.!?
According to the optimum structures of orthorhombic and tet-
ragonal La,CuQ, obtained by the present atom~atom potential
calculations, La,CuQy is more stable in the orthorhombic than
in the tetragonal structure by 1.85 kcal/mol per formula unit
La,CuQ,. This small energy difference seems quite reasonable,
given the small structural difference between the two structures.
We now examine how the dopants M might affect the T — O
distortion. The Sr?* and Ba?* cations are larger in ionic radius
than the La®* cation,” and, in average, the copper atoms of
La, ,M,CuQ, are in a higher oxidation state and hence are smaller
in size than those of La,CuQy. In general, a larger cation gives
rise to greater nonbonded repulsions and can be characterized by
a larger B or p value in the nonbonded repulsion terms associated
with the cation. To simulate the crystal structure of La, ,M,CuQj,,
therefore, we perform the atom—atom potential calculations on
orthorhombic La,CuQ, by increasing the B value for the
La3*-La?* pair and decreasing that for the Cu?*=Cu?* pair. With
such changes in the two values, La,CuQ, is calculated to be
orthorhombic but “less orthorhombic” in that the z(La), y(O1),
and z(0O2) values become closer to zero. That is, the driving force
for the T — O distortion is diminished in La, ,M,CuQ,, and thus
the T — O distortion temperature would be lower in La, M, CuO,
than in La,CuQ,. Since the Ba?* cation is larger in size than the
Sr2* cation,?® the T — O distortion temperature would be lower
in La, gsBag ;sCuOy than in La, g5Sry;5CuQ,. These predictions
are all in agreement with experiments.?"

In summary, the T — O distortion in both La,CuO, and
La, ,M,CuQy, is not driven by an electronic instability, such as
a Peierls distortion but by the ionic interactions involving the La®*
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ions (and the M?* ions as well in the doped materials).
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In the standard mechanism for alkylnitrosourea (ANU) al-
kylation of DNA in vitro and in vivo,? reactive intermediates
formed hydrolytically in cytosol by the sequence ANU =
RCH,N=N—OH — RCHN, = RCH,N,* — “RCH,*” are
thought to react with DNA nucleophiles by direct displacement,
a process that should give a random distribution of products.
Indeed, the “Sn2” reagents dimethylsulfate and 2-chloroethyl-
(methylsulfonyl)methane sulfonate give random, nonsequence
specific products at N;-guanine (N;-dG) in pBR-322 DNA.? Yet
the powerful mutagenic* and oncogenic® properties of the ANUs
1-methyl-(MNU) and 1-ethyl-1-nitrosourea (ENU) are related
to site- and sequence-specific alkylation of O%-dG, in a 5-
dGdGdN-3’ DNA codon, where dN is any base; neither N;-dG;,
nor 0%-dG; is alkylated.> Sequence-specific reactions of ANUs
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